
System Identification
Toolbox™ Release Notes

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

System Identification Toolbox™ Release Notes

© COPYRIGHT 2003–2014 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

R2014a

Recursive Least Squares Estimator and Recursive
Polynomial Model Estimator blocks for online model
parameter estimation . 2

Interactive identification of single-input/single-output
plants from measured data in PID Tuner app 2

Interactive identification of single-input/single-output
plants from simulation data when tuning PID Controller
blocks using Simulink Control Design 3

ssregest, a regularization-based state-space model
estimator, for improved accuracy on short, noisy data
sets . 4

plot command for iddata object enhanced 4
Options set and specification of input delay and noise source
integrator for arxRegul command 5

R2013b

Regularized estimation of linear and nonlinear models for
obtaining parameter values with less variance 8

ssarx subspace identification method for robust estimation
of state-space models using closed-loop data 9

Redesigned state-space model and initial model refinement
dialog boxes . 10

getpar and setpar commands to obtain and set parameter
attributes of identified linear models 12

Unstable models option added to System Identification
Tool . 13

SamplingGrid property for tracking dependence of array of
sampled models on variable values 13

iii

R2013a

Bug Fixes

R2012b

Regularized estimates of impulse response, specification
of transport delays and estimation options using
impulseest . 18

translatecov command for translating model covariance
across transformations . 18

ssform command for quick configuration of state-space
model structure . 19

Feedthrough specification for discrete-time transfer
function model estimation . 19

R2012a

Summary . 22
New Features in This Version . 22
Changes Introduced in This Version 40

R2011b

Bug Fixes

R2011a

Bug Fixes

iv Contents

R2010b

No New Features or Changes

R2010a

New Ability to Use Discrete-Time Linear Models for
Nonlinear Black-Box Estimation 82

New Cell Array Support for B and F Polynomials of
Multi-Input Polynomial Models . 83

Functions and Function Elements Being Removed 83

R2009b

No New Features or Changes

R2009a

Enhanced Handling of Offsets and Trends in Signals 88
Ability to Get Regressor Values in Nonlinear ARX
Models . 89

R2008b

Functions and Properties Being Removed 92

R2008a

Simulating Nonlinear Black-Box Models in Simulink
Software . 94

v

Linearizing Nonlinear Black-Box Models at User-Specified
Operating Points . 95

Estimating Multiple-Output Models Using Weighted Sum
of Least Squares Minimization Criterion 95

Improved Handling of Initial States for Linear and
Nonlinear Models . 96

Improved Algorithm Options for Linear Models 97
New Block Reference Pages . 98
Functions and Properties Being Removed 98

R2007b

New Polynomial Nonlinearity Estimator for
Hammerstein-Wiener Models . 102

R2007a

New Nonlinear Black-Box Modeling Options 104
New Nonlinear Grey-Box Modeling Option 104
Optimization Toolbox Search Method for Nonlinear
Estimation Is Supported . 105

New Getting Started Guide . 105
Revised and Expanded User’s Guide 106

R2006b

MATLAB Compiler Support . 108

R2006a

balred Introduced for Model Reduction 112
Search Direction for Minimizing Criteria Can Be Computed
by Adaptive Gauss-Newton Method 112

vi Contents

Maximum Number of Bisections Used by Line Search Is
Increased . 112

Functions and Properties Being Removed 112

R14SP3

No New Features or Changes

R14SP2

No New Features or Changes

vii

viii Contents

R2014a

Version: 9.0

New Features: Yes

Bug Fixes: Yes

1

R2014a

Recursive Least Squares Estimator and Recursive
Polynomial Model Estimator blocks for online model
parameter estimation
Compatibility Considerations: Yes

Use the Recursive Least Squares Estimator and Recursive Polynomial Model
Estimator blocks to perform online model parameter estimation in Simulink®.
Online parameter estimation, also known as online estimation or online
tuning, refers to estimating model parameters as new data becomes available
during the operation of the model. You can generate code for these blocks
using code generation products such as Simulink Coder™. For example,
you can estimate the coefficients of a time-varying plant from measured
input-output data and feed them to an adaptive controller. After validating
the online estimation in simulation, you can generate code for your Simulink
model and deploy the same to an embedded target.

These blocks are in the Estimators library.

For examples of how to use these blocks, see “Preprocess Online Estimation
Data” and “Validate Online Estimation Results”.

Compatibility Considerations

The following blocks will be removed in a future release: AR Estimator,
ARMAX Estimator, ARX Estimator, BJ Estimator, OE Estimator, and PEM
Estimator.

Interactive identification of single-input/single-output
plants from measured data in PID Tuner app

As a part of the control design workflow, you can interactively identify a plant
using measured data in the PID Tuner app in Control System Toolbox™. For
example, to design a PID controller for a manufacturing process, you can start
with response data from a bump test on your system. You can import this
data instead of a plant model in the tuner. You can then interactively identify
a linear plant model whose response fits the response data.

2

Interactive identification of single-input/single-output plants from simulation data when tuning PID Controller blocks using
Simulink® Control Design™

The PID Tuner automatically tunes a PID controller for the identified model.
You can then interactively adjust the PID controller gains, and save the
identified plant and tuned controller. For more information, see “System
Identification for PID Control”.

To access the PID Tuner, enter pidtool at the MATLAB® command line. For
an example, see “Interactively Estimate Plant Parameters from Response
Data”.

Interactive identification of single-input/single-output
plants from simulation data when tuning PID
Controller blocks using Simulink Control Design

You can obtain a linear representation of a Simulink model and tune
the gains of a PID Controller block for the plant in the PID Tuner
app. The identification-based approach serves as an alternative to the
linearization-based approach and is useful where linearization fails to yield
a good plant model. This functionality requires Simulink Control Design™
software.

The identification works by simulating the Simulink model and then using
the simulated input-output data to obtain a plant model. You identify the
plant using interactive graphical tools in the PID Tuner app. Next, you
use the identified model to tune your PID Controller block. For example,
suppose you want to tune the PID Controller block in a model that contains
a Triggered Subsystem block. The analytical block-by-block linearization
algorithm does not support event-based subsystems, and therefore the model
linearizes to zero. Now, you can simulate the Simulink model for a chosen
input and use the simulated data to identify a plant model. The PID Tuner
automatically tunes the PID controller for the identified model. You can then
interactively adjust the performance of the tuned control system, and save
the identified plant and tuned controller. For more information, see “System
Identification for PID Control”.

To access the PID Tuner, in the PID Controller block dialog box, click Tune.
For an example, see “Design a PID Controller Using Simulated I/O Data” in
the Simulink Control Design documentation.

3

R2014a

ssregest, a regularization-based state-space model
estimator, for improved accuracy on short, noisy
data sets

You can use ssregest to estimate state-space models. This estimator is
known to perform better than n4sid for short, noisy data sets. For some
problems, the quality of fit using n4sid is sensitive to options, such as
N4Horizon, whose values can be difficult to determine. In comparison, the
quality of fit with ssregest is less sensitive to its options, which makes
ssregest simpler to use.

ssregest estimates a regularized ARX model and converts the ARX model
to a state-space model. The software then uses balanced model reduction
techniques to reduce the state-space model to the specified order. You can
specify estimation options for ssregest using ssregestOptions.

You can also select this estimator in the System Identification Tool. In the
State Space Models dialog box, expand Estimation Options and select
Regularized Reduction from the Estimation Method drop-down list.

plot command for iddata object enhanced

The plot command for input-output data iddata has the following
enhancements:

• Multiexperiment data or datasets with more than one input or output
channels are plotted on a single plot

• Input and output channels can be grouped together

4

Options set and specification of input delay and noise source integrator for arxRegul command

You can customize the plot, such as group and ungroup channels, and explore
data characteristics, such as peak and mean value, using the right-click menu.

You can also customize the plot, such as specify axes labels, using
iddataPlotOptions.

Options set and specification of input delay and
noise source integrator for arxRegul command
Compatibility Considerations: Yes

You can now use arxRegulOptions to specify regularization options for
arxRegul. Regularization options include the regularization kernel to use,
such as 'TC' and 'SE', and search method for estimating regularization
constants.

You can also specify input delay and presence of a noise source integrator as
Name-Value pair arguments in arxRegul.

5

R2014a

Compatibility Considerations

Replace [lambda,R] = arxRegul(data,orders,kernel) and [lambda,R]
= arxRegul(data,orders,kernel,max_size) syntaxes with [lambda,R] =
arxRegul(data,orders,options) syntax. Specify kernel and max_size in
the options set created using arxRegulOptions.

6

R2013b

Version: 8.3

New Features: Yes

Bug Fixes: Yes

7

R2013b

Regularized estimation of linear and nonlinear
models for obtaining parameter values with less
variance

You can now obtain regularized estimates of parameters for linear and
nonlinear models. Previously, you could specify this option for correlation
model estimation only, using impulseestOptions.

Regularization reduces variance of estimated model parameters by trading
variance for bias. Regularization is useful for:

• Identifying overparameterized models, such as nonlinear ARX models

• Imposing apriori knowledge of model parameters in structured models,
such as grey-box models

• Incorporating knowledge of system behavior in ARX and FIR models

Using regularization adds a penalty proportional to the parameter dimension
and values in the cost function that is minimized for estimation. Without
regularization, the parameter estimates are obtained by minimizing a
weighted quadratic norm of the prediction errors ε(t,θ):

V tN
t

N

1

2(,)

where t is the time variable, N is the number of data samples and ε(t,θ) is the
predicted error computed as the difference between the observed output and
the predicted output of the model.

A regularized estimation minimizes:

ˆ ,V t RN
t

N
T

1

2 ,

where λ is a constant that trades off variance for bias in the estimated values
of parameters θ. R is an associated weighting matrix.

8

http://www.mathworks.com/help/releases/R2013b/ident/ref/impulseestoptions.html

ssarx subspace identification method for robust estimation of state-space models using closed-loop data

For more information on regularization, see Regularized Estimates of Model
Parameters.

You can specify the regularization constants Lambda, R, and Nominal at the
command line or in the System Identification Tool:

• At the command line, use the Regularization option available in the
estimation options set (tfestOptions, ssestOptions,...) for linear models.

For nonlinear models, the option is available in the Algorithm property of
idnlarx, idnlhw, and idnlgrey models.

For ARX models, you can generate Lambda and R values automatically from
a given regularization kernel using the arxRegul command.

See the estimator reference pages and Regularized Identification of
Dynamic Systems for examples.

• In the System Identification Tool, click Regularization in the linear
model estimation dialog box or click Estimation Options in the Nonlinear
Models dialog box.

For an example, see Estimate Regularized ARX Model Using System
Identification Tool.

ssarx subspace identification method for robust
estimation of state-space models using closed-loop
data

N4Weight, which represents the weighting scheme used for singular-value
decomposition by the N4SID algorithm, now includes a ssarx option. This
option is an ARX estimation-based algorithm to compute the weighting.
Specifying this option allows the N4SID algorithm to compute unbiased
estimates of the model parameters when using data that is collected in a
closed-loop operation. For more information about the algorithm, see Jansson,
M., "Subspace identification and ARX modeling", 13th IFAC Symposium on
System Identification, Rotterdam, The Netherlands, 2003.

To specify this option:

• At the command line, set the N4Weight option in n4sidOptions or
ssestOptions to 'ssarx'.

9

http://www.mathworks.com/help/releases/R2013b/ident/ug/regularized-estimates-of-model-parameters.html
http://www.mathworks.com/help/releases/R2013b/ident/ug/regularized-estimates-of-model-parameters.html
http://www.mathworks.com/help/releases/R2013b/ident/ref/tfestoptions.html
http://www.mathworks.com/help/releases/R2013b/ident/ref/ssestoptions.html
http://www.mathworks.com/help/releases/R2013b/ident/ref/idnlarx.html
http://www.mathworks.com/help/releases/R2013b/ident/ref/idnlhw.html
http://www.mathworks.com/help/releases/R2013b/ident/ref/idnlgrey.html
http://www.mathworks.com/help/releases/R2013b/ident/ref/arxregul.html
http://www.mathworks.com/help/releases/R2013b/ident/examples/regularized-identification-of-dynamic-systems.html
http://www.mathworks.com/help/releases/R2013b/ident/examples/regularized-identification-of-dynamic-systems.html
http://www.mathworks.com/help/releases/R2013b/ident/ug/estimate-regularized-arx-model.html
http://www.mathworks.com/help/releases/R2013b/ident/ug/estimate-regularized-arx-model.html
http://www.mathworks.com/help/releases/R2013b/ident/ref/n4sidoptions.html
http://www.mathworks.com/help/releases/R2013b/ident/ref/ssestoptions.html

R2013b

• In the System Identification Tool, in the State Space Models dialog box,
expand Estimation Options and select SSARX from the N4Weight
drop-down list.

For an example of using the subspace algorithm for closed-loop data, see the
n4sid reference page.

Redesigned state-space model and initial model
refinement dialog boxes

The State Space Models and Linear Model Refinement dialog boxes have
been redesigned to improve state-space model estimation and initial model
refinement workflows.

To open the State Space Models dialog box, select Estimate > State Space
Models in the System Identification Tool.

10

http://www.mathworks.com/help/releases/R2013b/ident/ref/n4sid.html

Redesigned state-space model and initial model refinement dialog boxes

To access the redesigned Linear Model Refinement dialog box, in the System
Identification Tool, select Estimate > Refine Existing Models.

11

R2013b

The initial model must be in the Model Board of the System Identification Tool
or a variable in the MATLAB workspace. This model can be a state-space,
polynomial, process, or transfer function model.

For more information, click Help in the dialog boxes.

getpar and setpar commands to obtain and set
parameter attributes of identified linear models

You can now use getpar with identified linear models to obtain parameter
values, free or fixed status, minimum/maximum bounds, and labels. Identified
linear models include process, input-output polynomial, state-space, transfer
function, and grey-box models.

Similarly, use setpar to set these parameter attributes.

12

http://www.mathworks.com/help/releases/R2013b/ident/ref/idparametricgetpar.html
http://www.mathworks.com/help/releases/R2013b/ident/ref/idparametricsetpar.html

Unstable models option added to System Identification Tool

Unstable models option added to System
Identification Tool

You can now estimate unstable models in the System Identification Tool.
You can use this option to:

• Estimate transfer function models using frequency-domain data.

• Estimate state-space models using time- or frequency-domain data.

• Refine linear models using time- and frequency-domain data.

This functionality is the same as setting the estimation option Focus to
'prediction' at the command line.

The option allows the estimation process to use parameter values that might
lead to unstable models. An unstable model is delivered only if it produces a
better fit to the data than other stable models computed during the estimation
process. Such an unstable model might be useful, if, for example, you plan
to design a controller for the model.

To set this option in the Transfer Function dialog box, expand Estimation
Options and select the Allow unstable models check box. In the State
Space Models and Linear Model Refinement dialog boxes, this option is
selected by default.

SamplingGrid property for tracking dependence of
array of sampled models on variable values

For arrays of identified linear (IDLTI) models that are derived by sampling
one or more independent variables, the new SamplingGrid property keeps
track of the variable values associated with each model in the array. This
information is shown when displaying or plotting the model array. The
information is useful to trace results back to the independent variables.

Set this property to a structure whose fields are named after the sampling
variables and contain the sample values associated with each model. All
sampling variables should be numeric and scalar valued, and all arrays of
sample values should be commensurate with the model array.

13

R2013b

For example, if you collect data at various operating points of a system, you
can identify a model for each operating point separately and then stack the
results together into a single system array. You can tag the individual models
in the array with information regarding the operating point:

nominal_engine_rpm = [1000 5000 10000];
sys.SamplingGrid = struct('rpm',nominal_engine_rpm)

where sys is an array containing three identified models obtained at rpms
1000, 5000, and 10000, respectively.

14

R2013a

Version: 8.2

New Features: No

Bug Fixes: Yes

15

R2012b

Version: 8.1

New Features: Yes

Bug Fixes: Yes

17

R2012b

Regularized estimates of impulse response,
specification of transport delays and estimation
options using impulseest
Compatibility Considerations: Yes

You can obtain regularized estimates of impulse response using the
regularization kernel (RegulKernel) estimation option. Regularization
reduces variance of estimated model coefficients and produces a smoother
response by trading variance for bias. You can also configure estimation
options such as prefilter order and data offsets. You use impulseestOptions
to specify the estimation options and pass them as an input to impulseest.

You can also specify filter orders and transport delays as inputs to
impulseest.

Compatibility Considerations

• Using a time vector as an input to impulseest or specifying the
'noncausal' flag warns and will be removed in a future version. Specify
the order of the impulse response model instead.

• To compute the acausal part of the response up to a negative lag L, set the
input delay input argument to -L.

translatecov command for translating model
covariance across transformations

You can use translatecov to translate model covariance across model
transformations such as continuous- and discrete-time conversions,
concatenation and conversions to different model types. Previously, model
covariance was lost when you performed such operations on a model directly.
translatecov lets you perform these operations while also translating the
covariance data. For example, transform an estimated continuous-time model
mc to discrete-time:

md = c2d(mc,Ts);
md2 = translatecov(@(x)c2d(x,Ts),mc)

18

http://www.mathworks.com/help/releases/R2012b/ident/ref/impulseestoptions.html
http://www.mathworks.com/help/releases/R2012b/ident/ref/impulseest.html
http://www.mathworks.com/help/releases/R2012b/ident/ref/translatecov.html

ssform command for quick configuration of state-space model structure

The first operation produces a discrete-time model, md, which does not contain
parameter covariance data. The second operation produces the model, md2,
which has the same structure and parameter values as mdbut contains
parameter covariance data.

ssform command for quick configuration of
state-space model structure

You can use ssform to configure model parameterization, feedthrough
and disturbance dynamics. This command lets you quickly
configure these properties when estimating state-space models
in a structured way. You can use this command as a simpler
alternative to explicitly modifying the Structure property of the
idss model for some commonly applied changes. For example, typing
ssform(model,'Form','canonical','DisturbanceModel','estimate')
configures the model structure such that:

• Its A, B, and C matrices are in observability canonical form

• The K matrix entries are all treated as free parameters

Feedthrough specification for discrete-time transfer
function model estimation

When estimating a discrete-time transfer function model, you can specify
whether the model has feedthrough. Use the Feedthrough name-value pair in
tfest or click Feedthrough in the graphical interface. For MIMO systems,
you can specify feedthrough for individual channels or a common value across
all channels.

19

http://www.mathworks.com/help/releases/R2012b/ident/ref/ssform.html
http://www.mathworks.com/help/releases/R2012b/ident/ref/idss.html
http://www.mathworks.com/help/releases/R2012b/ident/ref/tfest.html

R2012a

Version: 8.0

New Features: Yes

Bug Fixes: Yes

21

R2012a

Summary

Important new features and changes in the System Identification Toolbox™
software for this release include:

• New functions that perform continuous-time estimation for state-space
and transfer function models.

• Support for multi-output estimation for polynomial models (such as
ARMAX, OE, and BJ) and process models.

• A new, uniform design for linear, parametric models. You can
specify whether a coefficient should be estimated and now impose
minimum/maximum bounds on estimated coefficients in a standardized
manner.

• Consolidation of the functions dealing with linear time-invariant systems
in the Control System Toolbox software. This unification of code allows for
a streamlined workflow in estimating models and analyzing them and
improves numerical accuracy and consistency.

• Many commands now have a more unified syntax, but, with few exceptions,
old syntax continues to work in this release for backward compatibility.
Incompatibilities introduced this release mainly involve configuration of
estimation options, translation of parameter covariance, reordering of
output arguments for some functions and the treatment of certain model
properties.

Note Instances where the changes will break existing code or yield
different results have been marked as "Backward incompatibility".

New Features in This Version
Compatibility Considerations: Yes

New features this release include:

• “Continuous-Time Transfer Function Identification for Time- and
Frequency-Domain Data ” on page 23

22

New Features in This Version

• “Time-Series Modeling and Forecasting, Including Generating ARIMA
Models” on page 24

• “Estimation of Multi-Output Polynomial and Process Models” on page 24

• “Interactive Response Plots with Better Look and Feel” on page 25

• “Models Created with System Identification Toolbox Can Be Used Directly
with Control System Toolbox Functions” on page 25

• “Improved Reliability of Numerical Computations” on page 26

• “Estimating Functions and Estimation Option Sets” on page 26

• “Model Analysis and Validation Option Sets” on page 28

• “Identified Linear Models” on page 29

• “System Identification Tool GUI” on page 39

Continuous-Time Transfer Function Identification for Time- and
Frequency-Domain Data
A new function, tfest, lets you estimate a linear transfer function based on a
system’s response. tfest can be used for time- and frequency-domain data.

The output of tfest is an idtf model, which is a new identified linear
model. An idtf model stores the identified numerator, denominator, and any
transport delays using its num, den, and ioDelay properties, respectively.

For information regarding estimating a continuous-time transfer function
using time-domain data, see How to Estimate Transfer Function Models by
Specifying Number of Poles.

For information regarding estimating a continuous-time transfer function
using frequency-domain data, see How to Estimate Transfer Function Models
with Transport Delay to Fit Given Frequency Response Data.

23

http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/tfest.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/idtf.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ug/btdfqjh.html#btdkxvg
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ug/btdfqjh.html#btdkxvg
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ug/btdfqjh.html#btdk1s7
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ug/btdfqjh.html#btdk1s7

R2012a

Time-Series Modeling and Forecasting, Including Generating
ARIMA Models

Forecasting
A new function, forecast, lets you forecast the response of an identified
linear model for a specified future time interval. You may also specify the
future inputs for models that are not time-series models.

forecast complements the functionality of predict, which evaluates
fixed-step ahead predictions on historic data.

Use forecastOptions to create an option set to specify forecasting options.

For more information, see forecast and forecastOptions.

Generating ARIMA Models
A new property for idpoly models, IntegrateNoise, designates if a model
output contains an integrator in its noise source. Use the IntegrateNoise
property to create, for example, ARI, ARIMA, ARIX, and ARIMAX models.

The IntegrateNoise property takes a logical vector of length Ny, where Ny is
the number of outputs.

For more information, see Estimating ARIMA Models.

Estimation of Multi-Output Polynomial and Process Models

Multi-Output Polynomial Models
idpoly models can now represent multi-output polynomial models. Use
idpoly to create a multi-output polynomial model. You can also use the
various estimator functions (ar, arx, bj, oe, and armax) to estimate a
multi-output idpoly model.

A new function, polyest, may also be used to estimate a multi-output
polynomial model of arbitrary structure. For more information, see polyest
and polyestOptions.

24

http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/forecast.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/forecastoptions.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/idpoly.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ug/btdop7s.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/idpoly.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/ar.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/arx.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/bj.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/oe.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/armax.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/polyest.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/polyestoptions.html

New Features in This Version

Compatibility Consideration:Backward incompatibility. See “idarx
Models No Longer Returned in Multi-Output Model Estimation” on page 43.

Multi-Output Process Models
idprocmodels can now represent multi-output process models. Use idproc to
create a multi-output process model. You can also use the new process model
estimator function, procest, to estimate a multi-output idproc model.

For more information, see procest and procestOptions.

Interactive Response Plots with Better Look and Feel
Enhanced response plots for identified linear models allow you to interactively:

• Choose the system characteristics that are displayed. To view a system
characteristic, right-click on the plot, select Characteristics, and then
select the system characteristic of interest.

• Modify plot properties, such as whether the grid is on or off, axes labels and
units, advanced plot options, etc. To modify the plot properties, right-click
on the plot, and select Properties. The Property Editor dialog box opens.
Modify the plot property of interest.

You can plot the confidence intervals associated with identified linear models.
You can now plot the confidence interval interactively, by right-clicking on
the plot and selecting Characteristics > Confidence Region. You can also
use the new function, showConfidence, to display the confidence region on a
plot via the command line.

Models Created with System Identification Toolbox Can Be
Used Directly with Control System Toolbox Functions
Identified linear models that you create using System Identification Toolbox
software can now be used directly with Control System Toolbox analysis
and compensator design commands. In previous releases, doing so required
conversion to Control System Toolbox model types.

Identified linear models include idfrd, idss, idproc, idtf, idgrey, and
idpoly models.

25

http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/idproc.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/procest.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/procestoptions.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/showconfidence.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/idfrd.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/idss.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/idproc.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/idtf.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/idgrey.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/idpoly.html

R2012a

Identified linear models can be used directly with:

• Any Control System Toolbox or Robust Control Toolbox™ functions that
operate on dynamic systems, including:

- Response plots — nichols, margin, and rlocus.

- Model simplification — pade, balred, and minreal.

- System interconnections — series, parallel, feedback, and connect

For a complete list of these functions, type:

methods('DynamicSystem')

• Analysis and design tools such as ltiview, sisotool, and pidtool.

• The LTI System block in Simulink models.

Improved Reliability of Numerical Computations
Algorithm sharing between the System Identification Toolbox and the Control
System Toolbox products increase the accuracy and consistency of results
for various operations. Operations affected include frequency-response and
pole-zero computation, model conversion, settling-time deduction, and model
discretization (c2d and d2c).

The handling of parameter covariance for over-parameterized systems has
also improved. You can now fetch parameter covariance data in a factored
form for over-parameterized systems, where the raw covariance matrix is
ill-defined.

Estimating Functions and Estimation Option Sets
You can use the new estimating functions tfest, ssest, procest, greyest,
polyest, and impulseest to estimate various model types. The new functions
are based on the prediction error method, PEM.

Also, you can now configure model estimation objective functions and search
schemes using dedicated option sets. To create and configure the option set
for a model estimating function, use the corresponding option set function:

26

http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/nichols.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/margin.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/rlocus.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/pade.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/balred.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/minreal.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/series.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/parallel.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/feedback.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/connect.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/ltiview.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/sisotool.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/pidtool.html

New Features in This Version

Model Estimating
Function

Options Set Function Estimated Linear
Model Type

ar arOptions idpoly (AR structure
polynomial)

armax armaxOptions idpoly (ARMAX
structure polynomial)

arx arxOptions idpoly (ARX structure
polynomial)

bj bjOptions idpoly (Box-Jenkins
polynomial)

greyest greyestOptions idgrey

iv4 iv4Options idpoly

n4sid n4sidOptions idss

oe oeOptions idpoly (Output-error
polynomial)

polyest polyestOptions idpoly

procest procestOptions idproc

ssest ssestOptions idss

tfest tfestOptions idtf

For more information regarding these functions, enter doc function_name
at the MATLAB command prompt.

Compatibility Considerations

The option sets replace the Algorithm model property.

The Algorithm property is no longer supported. The fields of Algorithm
map to estimation options as follows:

Algorithm Property Field Options Set Field

LimitError Advanced.ErrorThreshold

Advanced.Threshold.Zstability Advanced.StabilityThreshold.z

27

R2012a

Algorithm Property Field Options Set Field

Advanced.Threshold.Sstability Advanced.StabilityThreshold.s

Advanced.Threshold.AutoInitThreshold Advanced.AutoInitThreshold

Criterion/Weighting OutputWeight

• If, Algorithm.Criterion was 'det', use
OutputWeight = 'noise'.

• If, Algorithm.Criterion was 'trace', use
OutputWeight = Algorithm.Weighting.

FixedParameter No replacement. Use the Structure property
of the identified linear model to designate its
fixed parameters.

MaxIter SearchOption.MaxIter

Tolerance SearchOption.Tolerance

MaxSize Advanced.MaxSize

Advanced.Search SearchMethod and SearchOptions. These
fields are available for only iterative estimation
methods, such as tfestOptions.

Model Analysis and Validation Option Sets
You can now use option sets to configure the various attributes of model
simulation and prediction commands. The option sets configure, among other
things, how the initial conditions and data offsets are handled. They replace
the property-value pairs used by the analysis commands as input arguments.
To create and configure the option set for an analysis or validation function,
use the corresponding option set creating function:

Analysis/Validation Function Options Set Function

predict predictOptions

compare compareOptions

sim simOptions

28

New Features in This Version

Analysis/Validation Function Options Set Function

simsd simsdOptions

forecast forecastOptions

findstates findstatesOptions

pe peOptions

For more information regarding these functions, enter doc function_name
at the MATLAB command prompt.

Compatibility Considerations

Specifying Initial Conditions and Noise Data To specify the initial
conditions and noise specifications for sim or simsd, use the corresponding
option set with the InitialCondition, AddNoise, and NoiseData options set
appropriately. In previous releases, you could use name and value pair input
arguments to specify these options.

Identified Linear Models

Support for Constraining and Fixing Parameters in All
Identified Linear Models
You can now specify minimum/maximum bounds for, and fix or free for
estimation, any parameter of an identified linear model. You use the new
model property, Structure, to access a parameter and configure it.

Support for Model Arrays
You can now create arrays of identified linear models to analyze multiple
models simultaneously. You can create an array using array subassignment.
For example, sys(:,:,k) = new sys;.

You can also use the stack function to create an identified linear model array.
For more information, see stack.

29

http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/stack.html

R2012a

You can also use the new function, rsample, to create an array of models
that sample an identified linear model within the uncertainty limits of its
parameters. For more information see rsample.

Estimation Report
You can use the new Report property of identified linear models for
information regarding the estimation performed to obtain the model.

For more information, see “Reorganization of Estimation Reports” on page 41.

Convert Time-Series Model to Input-Output Model for Analysis
Use the new function, noise2meas, to convert a time-series model, which has
no measured inputs, to an input-output model for linear analysis. noise2meas
complements the functionality of noisecnv, which converts an identified
model with noise channels to a model with only measured inputs.

For more information, see noise2meas.

Specify Input/Output Pairs Using Subsystems
You can now specify subsystems as input/output models for all identified
linear models, except idgrey models.

For example, sys(i,j) = sys0;

Group Inputs and Outputs
You can now group inputs and outputs for identified linear models using the
InputGroup and OutputGroup properties, respectively.

For more information regarding specifying input groups, enter help
idlti.InputGroup at the MATLAB command prompt.

For more information regarding specifying output groups, enter help
idlti.OutputGroup at the MATLAB command prompt.

30

http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/rsample.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/noise2meas.html

New Features in This Version

Model Parameter Interaction
New commands for interacting with the parameters of identified linear
models include:

• getpvec — Fetch the model parameters.

• setpvec — Set the model parameters.

• getcov — Fetch the parameter covariance matrix.

• setcov — Set the parameter covariance matrix.

• nparams — Fetch number of model parameters.

For more information regarding these functions, enter doc function_name
at the MATLAB command prompt.

Random Sampling
The new rsample function creates a set of perturbed systems corresponding to
an identified linear model. Use this random sampling of an identified linear
model for Monte-Carlo analysis.

For more information see rsample.

Compatibility Considerations

The recommended usage and workflow has changed for some model
parameters. Where possible, backward compatibility is maintained in
this release. However, adoption of the recommended changes is strongly
encouraged as obsoleted model properties and workflows may not be
supported in the future.

The following table lists affected model properties:

31

http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/rsample.html

R2012a

Property Model Types
Affected

What Happens
in R2012a

Use This
Instead

ParameterVector idss, idpoly,
idgrey, and
idproc

Still available. Use the new
function getpvec
to access model
parameters.
The list of
parameters
obtained from
ParameterVector
may differ
from the list
of parameters
returned by
getpvec.

PName idss, idpoly,
idgrey, and
idproc

Still available. Each identified
linear model now
has a Structure
property, which
consists of the
parameters
relevant to the
model. Each of
the parameters
has an Info field,
which may be
used to store
information
regarding the
parameter.
To store the
parameter name,
use Info.Label.

Algorithm idss, idpoly,
idgrey, and
idproc

Still available. See “Estimating
Functions and
Estimation
Option Sets” on
page 26.

32

New Features in This Version

Property Model Types
Affected

What Happens
in R2012a

Use This
Instead

idss, idpoly,
idgrey, and
idproc

Still available. Use the new
functions,
getcov and
setcov, to
interact with
the covariance
matrix of
the model.
Also, after a
model, sys, is
estimated, you
may access
the estimated
covariance
matrix using
sys.Report.Parameters.

CovarianceMatrix

All identified
linear models.

Backward
incompatibility.
Parameter
covariance is no
longer translated
for the following
operations with
identified linear
models:

• Model
discretization

• Model
conversion

• Model
concatenation

N/A

33

R2012a

Property Model Types
Affected

What Happens
in R2012a

Use This
Instead

EstimationInfo idss, idpoly,
idgrey, and
idproc

Still available. Replaced by
the new model
property,
Report.For more
information, see
“Reorganization
of Estimation
Reports” on page
41.

InputName,OutputNameAll identified
linear models.

Backward
incompatibility.
By default, the
input/output
channel names
are set to ''.
In previous
releases, the
default channel
names were set
to {'u1',...}
and {'y1',...}
for input and
output channels,
respectively.
When an
identified
linear model is
estimated using
an iddata object,
it will inherit
the input/output
channels names
from the iddata
object.

N/A

34

New Features in This Version

Property Model Types
Affected

What Happens
in R2012a

Use This
Instead

TimeUnit All identified
models.

You can now
specify the
TimeUnit as
only one of
the supported
units. Supported
units include:
'nanoseconds',
'microseconds',
'milliseconds',
'seconds',
'minutes',
'hours', 'days',
'weeks',
'months', and
'years'.

N/A

Ts idss and idpoly Backward
incompatibility.
For discrete-time
models, default
is Ts = -1,
which indicates
an unspecified
sample time.
In previous
releases, the
default value of
Ts was 1.

N/A

Noise Channel Treatment When Converting Identified Linear Model
to Numeric LTI Model

Backward incompatibility. You can convert an identified linear model to
a numeric LTI model for use in Control System Toolbox. When you do so,
the model returned contains only the measured components of the original

35

R2012a

model. In previous releases, the noise channels of the original model were also
returned as extra inputs of the resulting model.

For example, consider the following polynomial model:

sys = idpoly([1 1],[1 2 3],[1 2])

In previous releases, executing sys_tf = tf(sys) returned a transfer
function model with two inputs. The first input corresponded to the measured
component, B/A. The second input corresponded to the noise component, C/A.
size(sys,2) is 1 but size(sys_tf,2) is 2. Thus, sys had one input, while
sys_tf had two inputs.

In this release, sys_tf = tf(sys) returns a SISO transfer function with
one input. This input corresponds to the measured component, B/A.sys and
sys_tf both have the same number of inputs.

To obtain the noise input channels in addition to the measured inputs, as in
previous releases, use the string 'augmented' as an additional input.

sys_tf = tf(sys,'augmented');

The inputs of sys_tf are grouped in the InputGroup property. The inputs
from the measured dynamics belong to the Measured input group, and the
noise-related inputs belong to the Noise input group.

To obtain a model containing just the noise component of the original model,
use the string 'noise' as an additional input:

sys_tf = tf(sys,'noise');

Conversion to Identified Linear Model of Numeric LTI Models
Ignores Input Groups

Backward incompatibility. In previous releases, when you converted a
numeric LTI model that had an input group named 'noise' into an identified
linear model, the corresponding inputs were converted to noise channels in
the resulting model. This behavior is no longer supported. You can use
the 'split' input argument when you convert a numeric LTI model to an
identified model. Using the 'split' input argument results in the last Ny

36

New Features in This Version

inputs being treated as noise channels in the identified model. Here, Ny is
the number of outputs.

For example, in previous releases:

sys = rss(2,2,5);
sys.InputGroup = struct('noise',4:5);
sys_idss = idss(sys);

resulted in sys_idss having the fourth and fifth inputs of sys being treated
as noise channels.

In this release, use:

sys_idss = idss(sys,'split');

As sys has two outputs and five inputs, its last two input channels are
converted to noise channels in sys_idss. sys_idss has three measured
input channels.

Input Channel Referencing for Measured Components

You can configure an estimated model to be free of the influence of noise by
setting the NoiseVariance property value to 0. In previous releases, you
achieved this result by subreferencing the inputs of the model using the
'measured' string, as in sys(:,'measured'). This type of subreferencing
is provided in this release for backward compatibility only and may not be
supported in the future.

Input Channel Referencing for Noise Components

You can now extract only the noise components of an identified linear model
using the syntax:

sys_noise_only = sys(:,[]);

Here, the : indexes all the outputs and [] specifies that none of the measured
inputs are extracted. sys_noise_only has zero measured inputs and is
consequently a noise model.

37

R2012a

In previous releases, you achieved this result by subreferencing the inputs
of the model using the 'noise' string, as in sys(:,'noise'). This type of
subreferencing is provided in this release for backward compatibility only and
may not be supported in the future.

Model Precedence Rules

The precedence order among identified linear models is idfrd > idss >
idpoly > idtf > idproc and idss > idgrey.

When you combine a numeric LTI model with an identified model, the
resulting model is a numeric LTI model. Interconnecting and combining
identified linear models using functions such as series, parallel, and
feedback, and performing model addition results in a numeric LTI model.
Input-output concatenation and model stacking of identified models returns
an identified model object.

Simultaneous Model-Type Conversion and Property Value Setting

Model conversion functions will not support setting model property values
in the future.

Replace calls such as:

sys_idfrd = idfrd(sys,w,'InputName','u1','InputDelay',3);

With:

sys_idfrd = idfrd(sys,w);
set(sys_idfrd,'InputName','u1','InputDelay',3);

Replace inpd2nk with absorbDelay

The inpd2nk is now obsolete. Use absorbDelay instead to absorb all time
delays of a dynamic system model into the system dynamics or the frequency
response data. In this release, calling inpd2nk results in the toolbox making
an internal call to absorbDelay.

For more information, see absorbDelay.

38

http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/absorbdelay.html

New Features in This Version

System Identification Tool GUI

Transfer Function Models
You can now estimate transfer functions using the System Identification
Tool GUI.

To open the Transfer Function dialog box:

1 Import a data set into the System Identification Tool GUI.

2 In the Estimate list, select Transfer Function Models.

For more information regarding transfer function estimation, open the
Transfer Function dialog box, and click Help.

Process Models
You can now estimate multi-output process models using the System
Identification Tool GUI.

To open the Process Models dialog box:

1 Import a data set into the System Identification Tool GUI.

2 In the Estimate list, select Process Models.

For more information regarding process model estimation, open the Process
Model dialog box and click Help.

State-Space Models
You can now use the System Identification Tool GUI for these operations:

• Estimate continuous-time state-space models.

• Specify the parameterization form, such as canonical or modal.

• Specify feedthrough, which determines whether the D matrix of the
state-space model is treated as free estimation parameter or fixed to zero.

• Specify input delay.

39

R2012a

To open the Polynomial and State Space Models dialog box:

1 Import a data set into the System Identification Tool GUI.

2 In the Estimate list, select State Space Models.

For more information regarding state-space estimation, open the Polynomial
and State Space Models dialog box and click Help.

Polynomial Models
You can now specify noise integration and input delays when estimating
polynomial models using the System Identification Tool GUI.

You can also estimate multi-output polynomial models by specifying the
appropriate model order.

To open the Polynomial and State Space Models dialog box:

1 Import a data set into the System Identification Tool GUI.

2 In the Estimate list, select Polynomial Models.

For more information regarding polynomial estimation, open the Polynomial
and State Space Models dialog box and click Help.

Compatibility Consideration: You no longer select Linear parameteric
models to open the Polynomial and State Space Models dialog box.

Changes Introduced in This Version
Compatibility Considerations: Yes

Changes introduced in this version:

• “Reorganization of Estimation Reports” on page 41

• “Polynomial Models” on page 42

• “State-Space Models” on page 48

• “Process Models” on page 52

40

Changes Introduced in This Version

• “Linear Grey-Box Models” on page 57

• “Identified Frequency-Response Data Models” on page 61

• “Identification Data Objects” on page 62

• “Analysis Commands” on page 63

• “Other Functionality Being Removed or Changed” on page 73

Reorganization of Estimation Reports
A new property of identified linear models, Report, provides information
regarding the performed estimation. This property replaces the
EstimationInfo property and provides additional information regarding:

• All estimated quantities — Parameter values and covariance, initiate state
values for state-space models and values of input levels for process models.

• The option set used for estimation.

• Additional fit criteria — Percentage fit to estimation data and the mean
square error.

The Report field is mostly uniform for the various identified linear models.
However, certain fields of Report are model dependent.

To access the Report property of an identified linear model, sys, use
sys.Report.

Compatibility Considerations

Report replaces the EstimationInfo property. The fields of EstimationInfo
map to those of Report as:

EstimationInfo Field Report Field

LossFcn Fit.LossFcn

FPE Fit.FPE

DataName DataUsed.Name

DataLength DataUsed.Length

41

R2012a

EstimationInfo Field Report Field

DataTs DataUsed.Ts

DataDomain DataUsed.Type

DataInterSample DataUsed.InterSample

WhyStop Termination.WhyStop
Termination information is not provided
for models estimated using a noniterative
estimation function, such as arx or n4sid.

UpdateNorm Termination.UpdateNorm
Termination information is not provided
for models estimated using a noniterative
estimation function, such as arx or n4sid.

LastImprovement Termination.LastImprovement
Termination information is not provided
for models estimated using a noniterative
estimation function, such as arx or n4sid.

Iterations Termination.IterationsTermination
information is not provided for models
estimated using a non-iterative estimation
function, such as arx or n4sid.

InitialState Either:
• InitialState (state-space models)

• InitialCondition (other identified linear
models)

Warning No replacement.

Polynomial Models

Polynomial Model Estimators
Use the new function, polyest, to estimate a polynomial model containing an
arbitrary subset of A, B, C, D, and F polynomials.

For more information, see polyest and polyestOptions.

42

http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/polyest.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/polyestoptions.html

Changes Introduced in This Version

Also, the functions ar, arx, bj, oe, and armax now support multi-output
polynomial estimation.

Integration on Noise Models (ARIMA models)
You can now introduce integrators in the dynamics of the disturbances added
to the output of the model.

For more information, see “Generating ARIMA Models” on page 24.

idarx Models No Longer Returned in Multi-Output Model
Estimation
idarx models are no longer returned when you use estimating functions for
multi-output ARX models. Support for idarx models may not be provided in
the future. Use idpoly models to estimate and represent multi-output ARX
models instead.

Compatibility Consideration: Backward incompatibility. arx, iv4,
and ivx now return idpoly models for multi-output estimation. In previous
releases, they returned idarx models.

To convert an existing idarx model, sys_idarx, to an idpoly model, use
idpoly(sys_idarx).

Similarly, to convert an existing idpoly model, sys_idpoly, to an idarx
model, use idarx(sys_idpoly).

Specify Transport Delays
Use the new idpoly property, ioDelay to specify the transport delays for
individual input/output pairs.

You can use ioDelay as an alternative to the nk order when estimating
polynomial models. Using ioDelay reduces the complexity of the model by
factoring out the leading zeros of the B polynomials, controlled by nk.

For example:

load iddata1 z1
load iddata2 z2

43

http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/ar.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/arx.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/bj.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/oe.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/armax.html

R2012a

data = [z1 z2(1:300)];
na = [2 3; 1 2];
nb = [1 2; 2 2];
nk = [2 1; 7 0];
sys1 = arx(data,[na nb nk]);
sys2 = arx(data,[na nb zeros(2)],'ioDelay',nk);

In this case, sys1 and sys2 are equivalent, but sys2.b shows fewer terms
in each B polynomial than sys1.b.

For more information, see idpoly.

Specify Display Variable
You can now specify the variable used to display model equations for idpoly
models. Use the new model property, Variable. For continuous-time models,
specify either 's' or 'p' as the variable. For discrete-time models, use either
'z^-1' or 'q^-1' as the lag variable.

For more information, see idpoly.

Multi-Output Weighting Using arx
For estimating multi-output ARX models, use the OutputWeight estimation
option to specify the output weighting. You create the option set for ARX
model estimation using arxOptions. In previous releases, to do so you
specified a NoiseVariance name-value pair input for arx.

arx uses the following syntaxes for assigning output weight:

Syntax Output Weight Value

arx(data,[na,bk,nk]) eye(Ny), where Ny is the number of
outputs

arx(data,[na nb nk],opt), where
opt is an option set created using
arxOptions

opt.OutputWeightIf
opt.OutputWeight = [], then
eye(Ny).

44

http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/idpoly.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/idpoly.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/arxoptions.html

Changes Introduced in This Version

Syntax Output Weight Value

arx(data,init_model), where
init_model is an estimation
initialization model

init_model.NoiseVariance

arx(data,init_model,opt) opt.OutputWeightIf
opt.OutputWeight = [], then
init_model.NoiseVariance.

Polynomial Structure
The new Structure property of idpoly models stores the adjustable
parameters, which include:

• The active polynomials

For example, consider the ARX model:

A = [1 2 1];
B = [0 3 4];
sys = idpoly(A,B);

sys.Structure lists the polynomials A and B as parameters. You can
specify nominal values and constraints for these parameters.

sys.Structure does not list the C, D, and F polynomials.

• The transport delays and integrate noise flag

You can set these delays and the flag for models of any polynomial
configuration.

You interact with the Structure property to specify constraints (such as
maximum/minimum bounds) for the various parameters. To change only the
values of the polynomials or the transport delays, use the relevant idpoly
model property, viz a, b, c, d, f, ioDelay, and IntegrateNoise.

For more information, see idpoly.

45

http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/idpoly.html

R2012a

Compatibility Considerations

The recommended usage and workflow has changed for some model
parameters and functionality. Where possible, backward compatibility is
maintained in this release. However, adoption of the recommended changes
is strongly encouraged as obsoleted model properties and workflow may not
be supported in the future.

The following table lists affected functionality:

Functionality What Happens in R2012a Use This Instead

Model properties that store
the polynomial order — na, nb,
nc, nd, nf, and nk

You may still modify the
value of these properties
as long as their sizes are
compatibility with the
input/output sizes.The
estimation commands for
polynomial models will
continue to support the
specification of “in-model”
delays using nk.

Use idpoly to create a new
model of desired orders.Use
ioDelay and InputDelay to
specify delays separate from
the B polynomial.

Model properties that
store standard deviation
information — da, db, dc, dd,
and df

You may still access these
model properties using dot
notation. For example,
sys.da.

Use the functions getpvec and
polydata to access parameters
and their standard deviations.

Treatment of the leading zeros
of the B polynomials

If you have a discrete-time
idpoly model that has nk
leading zeros, then nk-1 of
them are treated as delays.
When you convert such a
model into another linear
model, these delays are set to
the appropriate delay related
property.For example,

sys = idpoly([1 2],...
[0 0 0 4]);
% nk = 3
sys2 = tf(sys);

N/A

46

http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/getpvec.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/polydata.html

Changes Introduced in This Version

Functionality What Happens in R2012a Use This Instead

The ioDelay property of sys2
is 2, and the numerator is {[0
4]}.

Model property —
InitialState

Still works. Use the option,
InitialCondition, when
creating the relevant option
set for estimation, prediction,
simulation, and comparison.

Storage of the B and F
polynomials

For multi-input models, the
b and f properties are no
longer saved as a matrix of
doubles. These properties
will now be saved using cell
arrays. To continue storing
these properties as a matrix of
doubles, use setPolyFormat

N/A

Treatment of the trailing zeros
of the B and F polynomials

Trailing zeros in the B
and F polynomials of a
discrete-time idpoly model
are not discarded. For
example, in previous releases:

sys = idpoly([1 2],...
[2 4 0 0 0]);

resulted in [2 4] as the B
polynomial for sys. Now, the
same code gives [2 4 0 0 0]
as the B polynomial for sys.
Similar considerations
apply to leading zeros
of B, F polynomials of a
continuous-time model.

N/A

47

http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/setpolyformat.html

R2012a

State-Space Models

State-Space Model Estimator
The new function, ssest, can be used to estimate a discrete-time or
continuous-time identified state-space model. You can use time-domain
or frequency-domain data with ssest and perform both structured and
unstructured model estimation. You can also choose a canonical form of the
identified state-space model.

To configure the handling of initial conditions and other initialization choices,
data offsets and search algorithm, use the associated option command,
ssestOptions.

For more information, see ssest and ssestOptions.

For a structured state-space model, which is an idss model with finite
parameters, you can use either pem or ssest to update the values of those
parameters for measured input-output data.

n4sid Supports Canonical Forms
The subspace estimator function, n4sid, now supports new parameterization
options, such as modal and companion canonical forms and the presence of
feedthrough.

To configure the handling of initial conditions and other initialization choices
and data offsets, use the associated option command, n4sidOptions.

For more information, see n4sid and n4sidOptions.

State-Space Structure
The new Structure property of idssmodels stores the adjustable parameters,
which include the a, b, c, d and k matrices.

You interact with the Structure property to specify constraints (such as
maximum/minimum bounds) for the various parameters. To only change
the values of the matrices, use the relevant idss model property, viz a, b,
c, d, and k.

48

http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/ssest.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/ssestoptions.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/n4sid.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/n4sid.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/n4sidoptions.html

Changes Introduced in This Version

For more information, see idss.

Compatibility Considerations

The recommended usage and workflow has changed for some model
parameters. Where possible, backward compatibility is maintained in
this release. However, adoption of the recommended changes is strongly
encouraged as obsoleted model properties and workflow may not be supported
in the future.

The following table lists affected model properties:

Model Property What Happens in R2012a Use This Instead

X0, InitialState Still available. Use the InitialState
option for estimation and the
InitialCondition option for
prediction, simulation, and
comparison. For example,
replace:

sys = n4sid(data,2,...
'InitialState','estimate');

with:

opt = n4sidOptions(...
'InitialState','estimate');
sys = n4sid(data,2,opt);

As, Bs, Cs, Ds, Ks, and X0s Still available. Use the Structure property
to specify constraints (such as
maximum/minimum bounds)
for A, B, C, D, and K. Use
the InitialState estimation
option to specify constraints
on the initial state vector. For
example, instead of:

sys = idss(A,B,C,D,K);
sys.X0s = [nan;1]

49

http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/idss.html

R2012a

Model Property What Happens in R2012a Use This Instead

syse = pem(data, sys);

Use:

opt = ssestOptions;
X0 = idpar([nan; 1]);
X0.Free(2) = false;
opt.InitialState = X0;
sys = idss(A,B,C,D,K);
syse = ssest(data, sys, opt);

da, db, dc, dd, and dk Still available. Use the new function idssdata
to obtain the state-space
matrix standard deviations.

nk Still available but may
cause a backward
incompatibility.If you
previously specified both nk
and InputDelay, you could
see different results in this
release.
For example,

load iddata1 z1;
sys = pem(z1,4,...
'nk',5,'InputDelay,2);

In this release, sys.nk is
3, whereas sys.nk was 5 in
earlier releases.

For estimation, use the
InputDelay and Feedthrough
estimation properties instead.
When creating an idss model,
specify the InputDelay and
Structure.d properties. nk,
InputDelay, and Feedthrough
are related:

• nk(j) = 0 means that the
model has no delay for
the jth input. Therefore,
InputDelay is 0, and
Structure.d.Free(:,j) is
true.

• nk(j) = 1 means that the
model has zero delay for
the jth input. Therefore,
InputDelay is 0, and
there is no feedthrough.
Structure.d.Free(:,j)
is false, and
Structure.d.Value(:,j)
is zero.

50

Changes Introduced in This Version

Model Property What Happens in R2012a Use This Instead

• nk(j) = N, N>1 means
that the model has
nonzero delay for the
jth input. Therefore,
InputDelay is N-1, and
there is no feedthrough.
Structure.d.Free(:,j)
is false, and
Structure.d.Value(:,j)
is 0.

nk > 1 can only be used for
a discrete-time model.

SSParameterization Still available. However, when
you use get to obtain the
value of SSParameterization,
the software may report
a canonical form as the
structured form.

• Use the 'form'/value
name-value pair when
estimating using either
n4sid or ssest to specify
the form of the estimated
model.

• To change the structure of
an existing model, use one
of these methods:

- Change each matrix
individually using the
Structure property.

- Use canon to specify a
canonical form.

- Use ss2ss and specify a
transformation matrix.

Note Parameter
covariance is not translated
in these operations.

51

R2012a

Model Property What Happens in R2012a Use This Instead

DisturbanceModel Still available. For estimation, specify
DisturbanceModel as an
option for estimation.For
changing the model structure,
for its disturbance component,
use Structure.k.Value and
Structure.k.Free instead.
For example,
DisturbanceModel =
'none' corresponds to setting
model.Structure.k.Value
to zeros and
model.Structure.k.Free
to false.

CanonicalIndices Still available if the model is
in canonical form.

Use canon and ss2ss to
change the state-space form.

Process Models

Process Model Estimator
The new function, procest, lets you estimate process models using
time-domain or frequency-domain data. You can also specify the handling of
input offsets and disturbances using an option set for this function using
procestOptions.

For more information, see procest and procestOptions.

Multi-Output Support
You can now create and estimate multi-output process models.

For more information, see “Multi-Output Process Models” on page 25

52

http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/procest.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/procestoptions.html

Changes Introduced in This Version

Noise Transfer Function
Use the new property NoiseTF of idproc models to specify the value of the
noise transfer function in numerical form. NoiseTF is a structure with the
fields num (numerator) and den (denominator) representing the noise-transfer
function. This property replaces the DisturbanceModel property.

Input Delay
The InputDelay property of idproc model represents input delays and is
now independent of the Td property.

The Td property represents the transport delay, which is thus similar to the
ioDelay property of idpoly and idtf models.

For more information, see idproc.

Process Model Structure
The Structure property of idproc models houses active parameters. These
parameters are a subset of Kp, Tp1, Tp2, Tp3, Tw, Zeta, Td, and Tz, depending
on the Type option used to create the model. Structure also contains the
Integration property whose value determines if the model structure contains
an integrator.

You use the Structure property to specify constraints (such as
maximum/minimum bounds) for the various active parameters.

Structure is an Ny-by-Nu array, where Ny is the number of outputs and Nu
is the number of inputs. The array specifies a transfer function for each
input/output pair.

For example:

sys = idproc({'p2u' 'p0' 'p3zi'; 'p1' 'p2d' 'p2uz'});

In this case, sys.Structure is a 2-by-3 array. sys.Structure(1,1).Zeta is
a parameter, while sys.Structure(1,2) does not have a Zeta field, as this
parameter is inactive for the (1,2) output-input pair.

To change the list of active parameters, you must create a new model.
However, you may change the Integration property at any time.

53

http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/idproc.html

R2012a

Lower Bound on Time Constants
The minimum value permitted for the time constants of an idproc model,
Tp1, Tp2, Tp3, Tw, and Zeta is now 0. In previous releases, you could not
specify for these constraints a value smaller than 0.001. For well-conditioned
estimations, it is still recommended that you specify reasonable upper and
lower bounds around the time-constant values.

Compatibility Considerations

The recommended usage and workflow has changed for some model
parameters. Where possible, backward compatibility is maintained in
this release. However, adoption of the recommended changes is strongly
encouraged as obsoleted model properties and workflow may not be supported
in the future.

The following table lists affected model properties:

Model Property What Happens in R2012a Use This Instead

InputLevel Still available. Use the InputOffset
option for estimation using
procestOptions. For
advanced control, you can
specify the InputOffset
option as 'estimate' or a
param.Continuous object.

InitialState Still available. Use the InitialCondition
option for estimation,
prediction, simulation and
comparison. For example,
replace:

sys = pem(data,'p1d',...
'InitialState','estimate');

with:

opt = procestOptions(...
'InitialCondition','estimate');

54

Changes Introduced in This Version

Model Property What Happens in R2012a Use This Instead

sys = procest(data,...
'p1d',opt);

DisturbanceModel Still available. The DisturbanceModel
property of idproc models in
previous releases represented
both the estimation flag and
as the actual value of the
noise transfer function. The
DisturbanceModel property
has now been replaced by:

• The NoiseTF property,
which represents the
value of the noise transfer
function.

• The DisturbanceModel
estimation option, which
is contained in the
procestOptions option
set. This option stores the
flag, which determines how
the noise transfer function
is estimated.

For example, replace:

load iddata1 z1;
sys = pem(z1,'p1d',...

'DisturbanceModel','arma1');
NoiseTF = sys.DisturbaceModel{2};

with:

load iddata1 z1;
opt = procestOptions(...

'DisturbanceModel','arma1');
sys = pem(z1,'p1d',opt);
NoiseTF = sys.NoiseTF;

55

R2012a

Model Property What Happens in R2012a Use This Instead

For more information, see
procestOptions.

X0 Still available. There is no replacement for
this model property as idproc
is not a state-space model.
Continuing to use X0 may
produce bad results.

Kp, Tp1, Tp2, Tp3, Tw, Zeta, Td,
and Tz

Backward incompatibility.
These properties are now
saved as double matrices. In
previous releases, they were
stored as structures.

Assigning the value of these
parameters to structures will
continue to work:

model = idproc('p1','Tp1',1,'Kp',2)
model.Tp1.value = 5;

In previous releases, you
could obtain the value of a
parameter as a structure and
access its fields. Now, you will
receive an error.

model = idproc('p1','Tp1',1,'Kp',2)
Tp1 = model.Tp1;
Tp1.status % throws error

However, subreferencing for
a field of the old parameter
structure will continue to
work:

model = idproc('p1','Tp1',1,'Kp',2)
model.Tp1.status

Use the Structure property
to specify parameter
constraints.Structure
replaces the specification
of process model parameter
bounds. See Call
Replacements on page 57.

56

http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/procestoptions.html

Changes Introduced in This Version

Model Property What Happens in R2012a Use This Instead

% returns {`estimate'}

Call Replacements

Replace a Call Like... With...

model.Tp1.status =
{`estimate'}

model.Structure.Tp1.Free =
true;

model.Tp1.status = {`zero'}
model.Structure.Tp1.Free = false;
model.Structure.Tp1.Value = 0;

model.Tp1.status ={ `fixed'} model.Structure.Tp1.Free =
false;

model.Tp1.min = value model.Structure.Tp1.Minimum =
value

model.Tp1.max = value model.Structure.Tp1.Maximum =
value

model.Tp1.value = value model.Structure.Tp1.Value =
value

For multi-input models:
model.Tp1.status{2} =
`estimate'

model.Structure(1,2).Tp1.Free
= true;

For multi-input models:
model.Tp1.value(2)= value

model.Structure(1,2).Tp1.Value
= value

Linear Grey-Box Models

Linear Grey-Box Model Estimator
The new function greyest lets you estimate the parameters of a linear
grey-box model. You can specify an option set for the estimation by using the
function, greyestOptions.

57

R2012a

For more information, see greyest and greyestOptions.

Complex Parameters Support
You can now parameterize a real system using complex-conjugate pairs of
parameters in an idgrey model.

When the parameters of such a system are estimated, they continue to be
complex conjugates. Thus, symmetry is maintained across the real axis.

For more information, see the related example in the greyest reference page.

ODE file API
You can now specify an arbitrary number of parameters as independent input
arguments to the ODE file. In previous releases, the parameters of the model
had to be consolidated into a single vector that was then passed as the first
input argument of the ODE file. Now, you can pass independent parameters
as separate input arguments. The same holds true for the optional input
arguments.

Old syntax:

ODEFUN(ParameterVector, Ts, OptionalArg)

New syntax:

ODEFUN(Par1, Par2, , ParN, Ts, OptArg1, OptArg2,)

If all the model parameters are scalars, you can still combine them into a
single vector and pass them as a single input argument to the ODE file.

Also, specifying the value for the output arguments K and X0 is now optional.
In earlier releases, you were required to set a value for K and X0 even if you
did not want to parameterize them. Now, you can omit them entirely from the
output argument list. For more information, see idgrey.

Linear Grey-Box Model Structure
The Structure property of the idgrey model stores information on the ODE
function and its parameters. Structure contains the following properties:

58

http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/greyest.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/greyestoptions.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/idgrey.html

Changes Introduced in This Version

Property Role

FcnType The sample time handling behavior
of the linear ODE model. FcnType
specifies whether the ODE file
returns state-space data that
corresponds to one of the following:

• 'c'— A continuous-time model.

• 'd'— A discrete-time model.

• 'cd'— A continuous-time model
if the sample time is 0 and a
discrete-time model if the sample
time greater than 0.

Compatibility Consideration:
Use instead of the CDmfile property.

Function Name or function handle to
the MATLAB function that
parameterizes the state-space
structure.Compatibility
Consideration: Use instead
of the MfileName property.

Parameters Vector of parameter objects, with an
entry for each model parameter. Use
the parameter object to specify initial
values and minimum/maximum
constraints. You can also indicate
whether the parameter is a free- or
fixed- estimation parameter.

ExtraArgs Option input arguments used
by the ODE file to compute the
state-space data.Compatibility
Consideration: Use instead of the
FileArgument property.

StateName Model state names.

StateUnit Model state units.

59

R2012a

Compatibility Considerations

The recommended usage and workflow has changed for some model
parameters. Where possible, backward compatibility is maintained in
this release. However, adoption of the recommended changes is strongly
encouraged as obsoleted model properties and workflow may not be supported
in the future.

The following table lists affected model properties:

Model Property What Happens in
R2012a

Use This Instead

MfileName Still available. Use the
Structure.Function
property to specify the
ODE function name
or function handle
instead.

X0 Still available. Use the InitialState
option when you create
an estimation option set
using greyestOptions.

dA, dB, dC, dD, dK and
dX0

Still available. Use the functions
getpvec and idssdata
to access parameters
and their standard
deviations.

FileArgument Still available. Use the
Structure.ExtraArgs
property to specify
the additional ODE
function arguments.

60

Changes Introduced in This Version

Model Property What Happens in
R2012a

Use This Instead

CDmfile Still available. Use the
Structure.FcnType
property to specify
sample time handling
behavior.

InitialState Still available. Use the InitialState
option for
estimation and the
InitialCondition
option for prediction,
simulation and
comparison.

DisturbanceModel Still available. Use the
DisturbanceModel
estimation option in the
option set created using
greyestOptions.

Identified Frequency-Response Data Models

Specify InterSample Behavior of Inputs
You can use the new InterSample property of idfrd models to specify the
behavior of the input signals between samples for model transformations
between discrete-time and continuous-time. This property is relevant only for
discrete-time idfrd models.

For more information, see the InterSample property information in idfrd.

Frequency Unit
Use the new property FrequencyUnit of idfrd models to specify the units
for frequency-domain data.

For a list of the supported units for FrequencyUnit, see idfrd.

61

http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/idfrd.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/idfrd.html

R2012a

Compatibility Consideration: The FrequencyUnit property replaces the
Unit property.

Compatibility Considerations

Input Delay Treatment (Backward incompatibility.) When you convert
an identified model into an idfrd model, its InputDelay and ioDelay
properties are translated into the corresponding properties of the idfrd
model. In previous releases, the delays were absorbed into the ResponseData
property as additional phase lag.

The OutputDelay property of an identified model is converted to the ioDelay
property of an idfrd model.

Identification Data Objects

Frequency-Domain Data Units
Use the new property FrequencyUnit of iddata objects to specify the units
for frequency-domain data.

For a list of the supported units for FrequencyUnit, see iddata.

Compatibility Consideration: The FrequencyUnit property replaces the
Unit property.

Impulse and Step Response Plots
Plot the impulse or step response for iddata objects by estimating a
discrete-time transfer function model using impulseest. Use the resulting
model as the input argument for impulse or step.

In the previous release, you could plot the step response without first
estimating a discrete-time transfer function model:

load iddata1 z1;
step(z1);

where z1 is an iddata object.

62

http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/iddata.html

Changes Introduced in This Version

Now, you must use impulseest to estimate a discrete-time transfer function.
Then, plot the appropriate response for the model. For example:

load iddata1 z1;
sys = impulseest(z1);
step(sys);

For more information, see impulseest.

Compatibility Consideration: Backward incompatibility. To see
the step or impulse response for negative time values, use the noncausal
input argument with impulseest. In previous releases, you could call
impulse(data) to do this.

Compatibility Considerations

Supported Units for TimeUnit Property You can now specify the
TimeUnit property of an iddata object as only one of the supported units.
Supported units include: 'nanoseconds', 'microseconds', 'milliseconds',
'seconds', 'minutes', 'hours', 'days', 'weeks', 'months', and 'years'.

Analysis Commands

Function What Has Changed in R2012a

predict • predict now returns a data object of the
same type as the input data.

• You can now specify an infinite prediction
horizon with time-series models. When
you specify the prediction horizon as Inf,
predict returns the initial condition
response of the model.

• Compatibility Consideration: For a
multi-output system, the predictor model
is now returned as a dynamic system. In

63

http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/impulseest.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/predict.html

R2012a

Function What Has Changed in R2012a

previous releases it was returned as a cell
array.

compare • When using FRD validation data, compare
plots the magnitude and phase response.
The fit percentage shown corresponds to the
closeness of the complex frequency response
of the system to that of the data (using
normalized root mean square, NRMSE).

• For complex-valued validation data or
model, compare plots the real and imaginary
parts on separate axes.

• You can now use compare to compare data
sets. The data sets may be either iddata or
frd objects.

• You can interactively change the prediction
horizon for time-domain comparison plots.
You can also interactively change the initial
conditions. Right-click on the plot to select
the appropriate option.

• You can now compare arrays of systems to
a validation data set.

• You can now specify the initial conditions
and sample range for comparison using
the option set created by the new function
compareOptions. For more information, see
compareOptions.

• Compatibility Consideration:
Backward incompatibility. The
format of the outputs has changed when you
call compare using the syntax:

[yh,fit,x0] = compare(data,...
sys1,...,sysn,m,options)

64

http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/compare.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/compareoptions.html

Changes Introduced in This Version

Function What Has Changed in R2012a

For example, fit is a cell array rather
than a 3-d numeric array when comparing
responses of multiple systems or when using
multi-experiment validation data.

step • You can specify an option set for the
generated plot using the function
stepDataOptions.

• You can customize a step plot by
creating a plot using stepplot. Then, to
display confidence intervals on the plot
programmatically, use showConfidence.

• Compatibility Considerations:

- Specify the number of standard deviations
for the confidence region using the new
ConfidenceRegionNumberSD option in
the corresponding option set. In previous
releases, you used the 'sd'/N name-value
pair to specify the number of standard
deviations.

- Backward incompatibility. Using a
2-element double vector to indicate the
plot time range is no longer supported.
You can only specify a scalar, the final
time, or a vector containing the time
instants to be plotted.

- Backward incompatibility. The third
output argument now returns the state
trajectory. In previous releases, the
third output argument was the response
standard deviation, which is now returned
as the fourth output argument.

65

http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/step.html
http://www.mathworks.com/help/releases/R2012b/ident/ref/stepdataoptions.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/stepplot.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/showconfidence.html

R2012a

Function What Has Changed in R2012a

impulse • You can specify an option set for the
generated plot using the function,
timeoptions. For more information, see
timeoptions.

• You can customize an impulse plot by
creating a plot using impulseplot. Then,
to display confidence intervals on the plot
programmatically, use showConfidence.

• Compatibility Considerations:

- Specify the number of standard deviations
for the confidence region using the new
ConfidenceRegionNumberSD option in
the corresponding option set. In previous
releases, you used the 'sd'/N name-value
pair to specify the number of standard
deviations.

- Backward incompatibility. Using a
2-element double vector to indicate the
plot time range is no longer supported.
You can only specify a scalar, the final
time, or a vector containing the time
instants to be plotted.

- Backward incompatibility. The third
output argument now returns the state
trajectory. In previous releases, the
third output argument was the response
standard deviation, which is now returned
as the fourth output argument.

66

http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/impulse.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/timeoptions.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/impulseplot.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/showconfidence.html

Changes Introduced in This Version

Function What Has Changed in R2012a

bode • To customize a bode plot, use bodeplot. You
can specify an option set for the generated
plot using the function bodeoptions.
For more information, see bodeplot and
bodeoptions.

To display confidence intervals on a bode plot
programmatically, use showConfidence.

• Compatibility Considerations:

- Specify the number of standard deviations
for the confidence region using the new
ConfidenceRegionNumberSD option in
the corresponding option set. In previous
releases, you used the 'sd'/N name-value
pair to specify the number of standard
deviations.

- The plot input arguments 'fill','mode',
and 'AP' are no longer supported. Use the
plot options, bodeoptions,getoptions
and setoptions, instead. Alternatively,
you may interactively change these
options by right-clicking on the plot and
choosing the appropriate options.

- Backward incompatibility. You can
no longer specify the frequency range
using w = {wmin, wmax,np}. Instead,
use logspace(wmin,wmax,np).

- Do not use bode for plotting time-series
models. Instead, use the new function
spectrum. For more information, see
spectrum.

67

http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/bode.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/bodeplot.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/bodeoptions.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/showconfidence.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/bodeoptions.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/getoptions.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/setoptions.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/spectrum.html

R2012a

Function What Has Changed in R2012a

pzmap Compatibility Considerations:

• Backward incompatibility. For
multi-input, multi-output systems,
pzmap now shows the system poles and
transmission zeros. In previous releases,
pzmap showed the poles and zeros of
individual input/output pairs.

To plot the poles and zeros for individual
input/output pairs, use iopzmap and
iopzplot. For more information, enter help
function_name at the MATLAB command
prompt.

• The 'sd/N' name-value input argument
for displaying the pole-zero confidence
regions is no longer supported. Instead,
use iopzmap and its corresponding
options set (pzoptions). Use the
ConfidenceRegionNumberSD option to
specify the standard deviations for the
confidence regions. You can also use the
showConfidence command to view the
confidence regions programmatically.

nyquist • You can customize a nyquist plot by creating
the plot using nyquistplot. Then, to
display confidence intervals on the plot
programmatically, use showConfidence.

• Compatibility Considerations:

- The 'sd/N' name-value input argument
for displaying the confidence ellipses is
no longer supported. Create an option
set using nyquistoptions. Use the
ConfidenceRegionNumberSD option
to specify the standard deviations
for the confidence ellipses. Use the
ConfidenceRegionDisplaySpacing

68

http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/pzmap.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/showconfidence.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/nyquist.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/nyquistplot.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/showconfidence.html

Changes Introduced in This Version

Function What Has Changed in R2012a

option to specify the spacing of the
confidence ellipses. For more information,
see nyquistoptions.

- Backward incompatibility. You can
no longer obtain the complex frequency
response and its uncertainty as the
outputs of nyquist. Instead, use
freqresp to obtain these values.

nyquist now returns the real and
imaginary parts of the frequency response
and their individual uncertainties. For
more information, see nyquist.

- Backward incompatibility. You can
no longer specify the frequency range
using w = {wmin, wmax,np}. Instead,
use logspace(wmin,wmax,np).

- The plot input name-value
pair'mode'/'same'is no longer
supported. Use the plot options instead
(see nyquistoptions,getoptions and
setoptions). Alternatively, you may
interactively change these options by
right-clicking on the plot and choosing the
appropriate options.

c2d • You can now use the conversion methods
'tustin', 'matched' and 'impulse'
without requiring the Control System
Toolbox software.

• You can specify the conversion method and
associated option for c2d using c2dOptions.
For more information, see c2dOptions.

• Compatibility Considerations:

- Parameter covariance translation is no
longer supported by c2d. Therefore,

69

http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/nyquistoptions.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/nyquist.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/nyquistoptions.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/getoptions.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/setoptions.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/c2d.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/c2doptions.html

R2012a

Function What Has Changed in R2012a

the 'CovarianceMatrix'-'none'
name-value pair is no longer supported.

- Backward incompatibility. Grey-box
models of FcnType'c' cannot be
discretized directly. Instead, convert such
models to idss models before using c2d.

- Backward incompatibility. Process
models cannot be discretized directly. You
must first convert your process model to
an idpoly model or an idtf model and
then discretize the new model.

d2c • You can now use the conversion methods
'tustin' and 'matched' without requiring
the Control System Toolbox software.

• You can specify the conversion method and
associated option for d2c using d2cOptions.
For more information, see d2cOptions.

• Compatibility Consideration:

- Parameter covariance translation is no
longer supported by d2c. Therefore,
the 'CovarianceMatrix'-'none'
name-value pair is no longer supported.

- Backward incompatibility.

Grey box models of FcnType'd' cannot be
converted into continuous-time models
directly. Instead, convert such models to
idss models before using d2c.

- The input name-value pair
'InputDelay'/0 are no longer supported.
Input delays are now handled uniformly,
as described in Continuous-Discrete
Conversion Methods.

70

http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/d2c.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/d2coptions.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ug/bs08hih.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ug/bs08hih.html

Changes Introduced in This Version

Function What Has Changed in R2012a

ssdata • Use the new function idssdata to fetch
state-space matrices for identified linear
models. If idssdata is used for a model
other than idss or idgrey, it returns empty
matrices for uncertainty outputs.

For more information, see idssdata.

• You can still call the ssdata command with
six or more output arguments to fetch the
state-space matrices and related uncertainty
information. However, this syntax of ssdata
may be removed in the future and it is
recommended to use idssdata instead.

• Compatibility Consideration:Backward
incompatibility. ssdata now returns the
sampling time, Ts, as the fifth output when
it is called with five outputs. In previous
releases, ssdata returned the disturbance
matrix, K, as the fifth output.

tfdata Compatibility Consideration: Backward
incompatibility. tfdata now returns the
sampling time, Ts, as the third output.
In previous releases, tfdata returned the
numerator standard deviation as the third
output.

The new syntax is:

[num,den,Ts,sdnum,sdden] = tfdata(sys);

sdnum and sdden are [] if sys does not contain
uncertainty information or for multi-output
polynomial models with a nondiagonal A
polynomial array.

71

http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/ssdata.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/idssdata.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/tfdata.html

R2012a

Function What Has Changed in R2012a

zpkdata Compatibility Consideration: Backward
incompatibility. zpkdata now returns
the sampling time, Ts, as its fourth output
argument. In previous releases, zpkdata
returned the standard deviations of the zeros.

The new syntax is:

[z,p,k,z,Ts,covz,covp,covk] = zpkdata(sys)

where covz, covp and covk are the covariance
of the zeros, poles and gain of sys.

canon You can use the new function canon to
transform idss models into various canonical
forms. For more information, see canon.

findstates(idParametric) You can now specify arbitrary prediction
horizons for findstates. You can use an
option set to specify the option for findstates.
Use the new function findstatesOptions to
create the option set. For more information,
see findstatesOptions.

ffplot ffplot is no longer supported. Use bodeplot
instead. Use bodeoptions to set the frequency
units and scale.

setstruc setstruct is no longer supported. Use the
Structure property of the idss model to
configure the model parameters.

setpname setpname is no longer supported. Use the
Info.Label field of the Structure property
associated with the model parameter.

idprops idprops is no longer supported. For
information regarding a model, enter doc
model_name.

idhelp idhelp is no longer supported. For information
regarding a model or function, enter doc
model_or_function_name.

72

http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/zpkdata.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/canon.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/canon.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/findstatesidparametric.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/findstatesoptions.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/ffplot.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/bodeplot.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/bodeoptions.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/setstruc.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/setpname.html

Changes Introduced in This Version

Other Functionality Being Removed or Changed

Functionality What Happens
When You Use This
Functionality?

Use This Instead Compatibility
Considerations

sys.LinearModel, for
idnlhw model, sys

Returns an idpoly
model.

N/A The LinearModel
property of idnlhw
models is no longer
returned as a
state-space model
for multi-output
models. Instead,
idnlhw returns an
idpoly model.

73

R2011b

Version: 7.4.3

New Features: No

Bug Fixes: Yes

75

R2011a

Version: 7.4.2

New Features: No

Bug Fixes: Yes

77

R2010b

Version: 7.4.1

New Features: No

Bug Fixes: No

No New Features or Changes

79

R2010a

Version: 7.4

New Features: Yes

Bug Fixes: No

81

R2010a

New Ability to Use Discrete-Time Linear Models for
Nonlinear Black-Box Estimation
You can now use the following discrete-time linear models for initializing a
nonlinear black-box estimation.

Discrete-time Linear Model Use for Initializing...

Single-output polynomial model of
ARX structure (idpoly)

Single-output nonlinear ARX model
estimation

Multi-output polynomial model of
ARX structure (idarx)

Multi-output nonlinear ARX model
estimation

Single-output polynomial model
of Output-Error (OE) structure
(idpoly) or state-space model with
no disturbance component (idss)
object with K = 0

Single-output Hammerstein-Wiener
model estimation

State-space model with no
disturbance component (idss
object with K = 0)

Multi-output Hammerstein-Wiener
model estimation

During estimation, the software uses the linear model orders and delay as
initial values of the nonlinear model orders and delay. For nonlinear ARX
models, this initialization always provides a better fit to the estimation data
than the linear ARX model.

You can use a linear model as an alternative approach to using model orders
and delay for nonlinear estimation of the same system.

You can estimate or construct the linear model and then use this model for
constructing (see idnlarx and idnlhw) or estimating (see nlarx or nlhw)
the nonlinear model. For more information, see Using Linear Model for
Nonlinear ARX Estimation, and Using Linear Model for Hammerstein-Wiener
Estimation in the System Identification Toolbox User’s Guide.

82

http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/idpoly.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/idarx.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/idss.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/idnlarx.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/idnlhw.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/nlarx.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/nlhw.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ug/bq5o_xw-1.html#bsgkhug
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ug/bq5o_xw-1.html#bsgkhug
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ug/bq2ix15.html#bsgkiwq
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ug/bq2ix15.html#bsgkiwq

New Cell Array Support for B and F Polynomials of Multi-Input Polynomial Models

New Cell Array Support for B and F Polynomials of
Multi-Input Polynomial Models

You can now use cell arrays to specify the B and F polynomials of multi-input
polynomial models. The B and F polynomials are represented by the b and f
properties of an idpoly object These properties are currently double matrices.

For multi-input polynomial models, these polynomials will be represented by
cell arrays only in a future version. If your code performs operations on the b
and f properties, make one of the following changes in the code:

• When you construct the model using the idpoly command, use cell arrays
to specify the B and F polynomials. Using cell arrays causes the b and f
properties to be represented by cell arrays.

• After you construct or estimate the model, use the new setPolyFormat
command to:

- Convert b and f properties to cell arrays.

- Make the model backward compatible to continue using double matrices
for b and f properties. This operation ensures that operations on b and
f properties that use matrix syntax continue to work without errors
in a future version.

When you use cell arrays, you must also update your code to use cell array
syntax on b and f properties instead of matrix syntax.

Note For single-input polynomial models, the b and f properties continue to
be double row vectors.

Functions and Function Elements Being Removed

83

http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/idpoly.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/setpolyformat.html

R2010a

Compatibility Considerations: Yes

Function or Function
Element Name

What Happens
When you Use
the Function or
Element?

Use This Instead Compatibility
Considerations

Double matrix support
for b and f properties
of multi-input idpoly
models.

Warns Use cell array
to specify the b
and f properties
of multi-input
polynomial models.

If your code performs
operations on the
b and f properties,
update the code to
be compatible with
a future release.
See “New Cell
Array Support for B
and F Polynomials
of Multi-Input
Polynomial Models”
on page 83.

84

R2009b

Version: 7.3.1

New Features: No

Bug Fixes: No

No New Features or Changes

85

R2009a

Version: 7.3

New Features: Yes

Bug Fixes: No

87

R2009a

Enhanced Handling of Offsets and Trends in Signals

This version of the product includes new and expanded functionality for
handling offsets and trends in signals. This data processing operation is
necessary for estimating more accurate linear models because linear models
cannot capture arbitrary differences between the input and output signal
levels.

The previous version of the product let you remove mean values or linear
trends from steady-state signals using the GUI and the detrend function.
For transient signals, you had to remove offsets and trends using matrix
manipulation.

The GUI functionality for removing means and linear trends from signals is
unchanged. However, you can now do the following at the command line:

• Save the values of means or linear trends removed during detrending using
a new detrend output argument. You can use this saved trend information
to detrend other data sets. You can also restore subtracted trends to the
output simulated by a linear model that was estimated from detrended
data.

For example, this syntax computes and removes mean values
from the data, and saves these values to the output variable T:
[data_d,T]=detrend(data). T is an object with properties that store offset
and slope information for input and output signals.

• Remove any offset or linear trend from the data using a new detrend
input argument. This is useful for removing arbitrary nonzero offsets from
transient data or applying previously saved trend information to any data
set.

For example, this syntax removes an offset or trend specified by T: data_d
= detrend(data,T).

• Add an arbitrary offset or linear trend to data signals. This is useful when
you want to simulate the response of a linear model about a nonzero
equilibrium input-output level and this model was estimated from
detrended data.

88

Ability to Get Regressor Values in Nonlinear ARX Models

For example, this syntax adds trend information to a simulated model
output y_sim, which is an iddata object: y = retrend(y_sim,T). T
specifies the offset and slope information for inputs and outputs.

For more information, see Handling Offsets and Trends in Data.

Ability to Get Regressor Values in Nonlinear ARX
Models

The getreg command can now return the numerical values of regressors in
nonlinear ARX models and provides an intermediate output of nonlinear
ARX models.

This advanced functionality converts input and output values to regressors,
and passes the regressor values to the evaluate command to compute
the model response. This incremental step lets you gain insight into the
propagation of information through the nonlinear ARX model.

For more information, see the getreg reference page. To learn more
about the nonlinear ARX model structure, see Nonlinear Black-Box Model
Identification.

89

http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ug/bqu7itj-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/getreg.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ug/bq2iwh8.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ug/bq2iwh8.html

R2008b

Version: 7.2.1

New Features: No

Bug Fixes: No

91

R2008b

Functions and Properties Being Removed
Compatibility Considerations: Yes

Function or Property Name What
Happens
When
You Use
Function
or
Property?

Use This Instead Compatibility
Considerations

model.Algorithm.
Trace

Still runs model.Algorithm.
Display

Using
model.Algorithm.
Trace
results in a
warning.

92

R2008a

Version: 7.2

New Features: Yes

Bug Fixes: No

93

R2008a

Simulating Nonlinear Black-Box Models in Simulink
Software

You can now simulate nonlinear ARX and Hammerstein-Wiener models in
Simulink using the nonlinear ARX and the Hammerstein-Wiener model
blocks in the System Identification Toolbox block library. This is useful in the
following situations:

• Representing dynamics of a physical component in a Simulink model using
a data-based nonlinear model

• Replacing a complex Simulink subsystem with a simpler data-based
nonlinear model

Note Nonlinear ARX Model and Hammerstein-Wiener Model blocks read
variables from the MATLAB (base) workspace or model workspace. When the
MATLAB workspace and model workspace contain a variable with the same
name and this variable is referenced by a Simulink block, the variable in the
model workspace takes precedence.

If you have installed Real-Time Workshop® software, you can generate code
from models containing nonlinear ARX and the Hammerstein-Wiener model
blocks. However, you cannot generate code when:

• Hammerstein-Wiener models use the customnet estimator for input or
output nonlinearity.

• Nonlinear ARX models use custom regressors or use the customnet or
neuralnet nonlinearity estimator.

You can access the new System Identification Toolbox blocks from the
Simulink Library Browser. For more information about these blocks, see
the IDNLARX Model (nonlinear ARX model) and the IDNLHW Model
(Hammerstein-Wiener model) block reference pages.

94

http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/customnet.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/customnet.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/neuralnet.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/idnlarxmodel.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/idnlhwmodel.html

Linearizing Nonlinear Black-Box Models at User-Specified Operating Points

Linearizing Nonlinear Black-Box Models at
User-Specified Operating Points

You can now use the linearize command to linearize nonlinear black-box
models, including nonlinear ARX and Hammerstein-Wiener models, at
specified operating points. Linearization produces a first-order Taylor series
approximation of the system about an operating point. An operating point is
defined by the set of constant input and state values for the model.

If you do not know the operating point, you can use the findop command to
compute it from specifications, such as steady-state requirements or values of
these quantities at a given time instant from the simulation of the model.

For nonlinear ARX models, if all of the steady-state input and output values
are known, you can map these values to the model state values using the
data2state command.

linearize replaces lintan and removes the restriction for linearizing models
containing custom regressors or specific nonlinearity estimators, such as
neuralnet and treepartition.

If you have installed Simulink Control Design software, you can linearize
nonlinear ARX and Hammerstein-Wiener models in Simulink after importing
them into Simulink.

For more information, see:

• Linear Approximation of Nonlinear Black-Box Models about computing
operating points and linearizing models

• Simulating Identified Model Output in Simulink about importing nonlinear
black-box models into Simulink

Estimating Multiple-Output Models Using Weighted
Sum of Least Squares Minimization Criterion

You can now specify a custom weighted trace criterion for minimization
when estimating linear and nonlinear black-box models for multiple-output
systems. This feature is useful for controlling the relative importance of
output channels during the estimation process.

95

http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ug/brjukrq.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ug/bq5gmcf.html

R2008a

The Algorithm property of linear and nonlinear models now provides the
Criterion field for choosing the minimization criterion. This new field can
have the following values:

• det — (Default) Specify this option to minimize the determinant of the
prediction error covariance. This choice leads to maximum likelihood
estimates of model parameters. It implicitly uses the inverse of estimated
noise variance as the weighting function. This option was already available
in previous releases.

• trace — Specify this option to define your own weighing function that
controls the relative weights of output signals during the estimation. This
criterion minimizes the weighted sum of least square prediction errors. You
can specify the relative weighting of prediction errors for each output using
the new Weighting field of the Algorithm property. By default, Weighting
is an identity matrix, which means that all outputs are weighed equally.
Set Weighting to a positive semidefinite symmetric matrix.

For more information about Algorithm fields for nonlinear estimation, see the
idnlarx and idnlhw reference pages.

Note If you are estimating a single-output model, det and trace values of
the Criterion field produce the same estimation results.

Improved Handling of Initial States for Linear and
Nonlinear Models

The following are new options to handle initial states for nonlinear models:

• For nonlinear ARX models (idnlarx), you can now specify a numerical
vector for initial states when using sim or predict by setting the Init
argument. For example:

predict(model,data,'init',[1;2;3;4])

where the last argument is the state vector.

For more information, see the sim and predict reference pages.

96

http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/idnlarx.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/idnlhw.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/sim.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/predict.html

Improved Algorithm Options for Linear Models

• For Hammerstein-Wiener models (idnlhw), you can now choose to estimate
the initial states when using predict or nlhw by setting INIT='e'.

For more information, see the predict and nlhw reference pages.

If you want to specify your own initial states, see the corresponding model
reference pages for a definition of the states for each model type.

If you do not know the states, you can use the findop or the findstates
command to compute the states. For more information about using
these commands, see the findop(idnlarx), findop(idnlhw),
findstates(idnlarx), and findstates(idnlhw) reference pages.

To help you interpret the states of a nonlinear ARX model, you can use the
getDelayInfo command. For more information, see the getDelayInfo
reference page.

The findstates command is available for all linear and nonlinear models.
Also see the findstates(idnlgrey) reference page.

Improved Algorithm Options for Linear Models

The following improvements are available for the Algorithm property of
linear models to align linear and nonlinear models (where appropriate) and
improve robustness for default settings:

• The SearchDirection field (model.Algorithm.SearchDirection) has
been renamed to SeachMethod (model.Algorithm.SearchMethod) to be
consistent with the nonlinear models, where the corresponding field is
SeachMethod.

• The new lsqnonlin option for specifying SearchMethod is available.
model.Algorithm.SearchMethod='lsqnonlin' uses the lsqnonlin
optimizer from the Optimization Toolbox™ software. You must have
Optimization Toolbox software installed to use this option.

• The improved gn algorithm (subspace Gauss-Newton method) is available
for specifying SearchDirection. The updated gn algorithm better handles
the scale of the parameter Jacobians and is also consistent with the
algorithm used for nonlinear model estimation.

97

http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/predict.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/nlhw.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/findopidnlarx.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/findopidnlhw.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/findstatesidnlarx.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/findstatesidnlhw.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/getdelayinfo.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/getdelayinfo.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/findstatesidnlgrey.html
http://www.mathworks.com/help/releases/R2012a/toolbox/optim/ug/lsqnonlin.html

R2008a

• The default values for the LimitError field of the Algorithm property
(modelname.Algorithm.LimitError) is changed to 0, which is consistent
with the corresponding option for estimating nonlinear models. In
previous releases, LimitError default value was 1.6, which robustified
the estimation process against data outliers by associating a linear
penalty for large errors, rather than a quadratic penalty. Now, there is no
robustification by default (LimitError=0). You can estimate the model with
the default setting and plot the prediction errors using pe(data.model). If
the resulting plot shows occasional large values, repeat the estimation with
model.Algorithm.LimitError set to a value between 1 and 2.

• The model.Algorithm.Advanced property has a new tolerance field
GnPinvConst corresponding to the gn SearchMethod. GnPinvConst
specifies that singular values of the Jacobian that are smaller than
GnPinvConst*max(size(J))*norm(J)*eps are discarded when computing
the search direction. You can assign a positive real value for this field.
Default value is 1e4.

• The default value of model.Algorithm.Advanced.Zstability property
has been changed from 1.01 to 1+sqrt(eps). The new default reduces the
possibility of a situation where the estimation algorithm does not converge
(predictor becomes unstable) while still allowing enough flexibility to
capture lightly damped modes.

New Block Reference Pages

New documentation for System Identification Toolbox blocks is provided. For
more information, see Block Reference in the System Identification Toolbox
reference documentation.

Functions and Properties Being Removed

98

http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/brjtjvv-1.html

Functions and Properties Being Removed

Compatibility Considerations: Yes

Function or Property Name What
Happens
When
You Use
Function
or
Property?

Use This Instead Compatibility
Considerations

lintan Still runs linearize(idnlhw)
linearize(idnlarx)

See “Linearizing
Nonlinear
Black-Box Models
at User-Specified
Operating Points”
on page 95.

model.Algorithm.
SearchDirection

Still runs model.Algorithm.
SearchMethod

See “Improved
Algorithm Options
for Linear Models”
on page 97.

gns option of
model.Algorithm.
SearchDirection

Still runs gn See “Improved
Algorithm Options
for Linear Models”
on page 97.

GnsPinvTol of
model.Algorithm.Advanced

Still runs GnPinvConst See “Improved
Algorithm Options
for Linear Models”
on page 97.

99

http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/linearizeidnlhw.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/linearizeidnlhw.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/linearizeidnlarx.html

R2007b

Version: 7.1

New Features: Yes

Bug Fixes: No

101

R2007b

New Polynomial Nonlinearity Estimator for
Hammerstein-Wiener Models

You can now estimate nonlinearities for Hammerstein-Wiener models using a
single-variable polynomial at either the input or the output. This nonlinearity
estimator is available at the command line.

For more information, see the poly1d reference pages. For more
information about estimating Hammerstein-Wiener models, see Identifying
Hammerstein-Wiener Models in the System Identification Toolbox
documentation.

102

http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/poly1d.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ug/bq2ix15.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ug/bq2ix15.html

R2007a

Version: 7.0

New Features: Yes

Bug Fixes: No

• “New Nonlinear Black-Box Modeling Options” on page 104

• “New Nonlinear Grey-Box Modeling Option” on page 104

• “New Getting Started Guide” on page 105

• “Revised and Expanded User’s Guide” on page 106

103

R2007a

New Nonlinear Black-Box Modeling Options

You can now estimate nonlinear discrete-time black-box models for
both single-output and multiple-output time-domain data. The System
Identification Toolbox product supports the following types of nonlinear
black-box models:

• Hammerstein-Wiener

• Nonlinear ARX

To learn how to estimate nonlinear black-box models using the System
Identification Tool GUI or commands in the MATLAB Command Window, see
the System Identification Toolbox documentation.

Note You can estimate Hammerstein-Wiener black-box models from
input-output data only. These models do not support time-series data, where
there is no input.

New demos are available to help you explore nonlinear black-box functions.
For more information, see the collection of demos in the Tutorials on
Nonlinear ARX and Hammerstein-Wiener Model Identification category.

New Nonlinear Grey-Box Modeling Option

You can now estimate nonlinear discrete-time and continuous-time models
for arbitrary nonlinear ordinary differential equations using single-output
and multiple-output time-domain data, or time-series data (no measured
inputs). Models that you can specify as a set of nonlinear ordinary differential
equations (ODEs) are called grey-box models.

To learn how to estimate nonlinear grey-box models using the commands
in the MATLAB Command Window, see System Identification Toolbox
documentation.

Specify the ODE in a function or a MEX-file. The template file for
writing the MEX-file, IDNLGREY_MODEL_TEMPLATE.c, is located in
matlab/toolbox/ident/nlident.

104

http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ug/bq2iwh8.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ug/bq2iwh8.html

Optimization Toolbox Search Method for Nonlinear Estimation Is Supported

To estimate the equation parameters, first construct an idnlgrey object to
specify the ODE file and the parameters you want to estimate. Use pem to
estimate the ODE parameters. For more information, see the idnlgrey and
pem reference pages.

New demos are available to help you explore nonlinear grey-box functions. For
more information, see the collection of demos in the Tutorials on Nonlinear
Grey-Box Model Identification category.

Optimization Toolbox Search Method for Nonlinear
Estimation Is Supported

If you have Optimization Toolbox software installed, you can specify the
lsqnonlin search method for estimating black-box and grey-box nonlinear
models in the MATLAB Command Window.

model.algorithm.searchmethod='lsqnonlin'

For more information, see the idnlarx, idnlhw, and idnlgrey reference
pages.

New Getting Started Guide

The System Identification Toolbox product now provides a new Getting
Started Guide. This guide introduces fundamental identification concepts and
provides the following tutorials to help you get started quickly:

• Tutorial – Identifying Linear Models Using the GUI — Tutorial for using
the System Identification Tool graphical user interface (GUI) to estimate
linear black-box models for single-input and single-output (SISO) data.

• Tutorial – Identifying Low-Order Transfer Functions (Process Models)
Using the GUI — Tutorial for using the System Identification Tool
graphical user interface (GUI) to estimate low-order transfer functions to
fit single-input and single-output (SISO) data.

• Tutorial – Identifying Linear Models Using the Command Line — Tutorial
for estimating models using System Identification Toolbox objects and
methods for multiple-input and single-output (MISO) data.

105

http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/idnlgrey.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/pem.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/idnlarx.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/idnlhw.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ref/idnlgrey.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/gs/gs_intropage.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/gs/gs_intropage.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/gs/bqs6ip8.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/gs/bqs6iw1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/gs/bqs6iw1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ident/gs/bqs6i4h.html

R2007a

Revised and Expanded User’s Guide

The System Identification Toolbox documentation has been revised and
expanded.

106

http://www.mathworks.com/help/releases/R2012a/toolbox/ident/ug/ug_intropage.html

R2006b

Version: 6.2

New Features: Yes

Bug Fixes: No

107

R2006b

MATLAB Compiler Support

The System Identification Toolbox product now supports the MATLAB
Compiler™ product.

You can use MATLAB Compiler to take MATLAB files as input and generate
redistributable, standalone applications that include System Identification
Toolbox functionality, including the following:

• Creating data and model objects

• Preprocessing and manipulating data

• Simulating models

• Transforming models, including conversions between continuous and
discrete time and model reduction

• Plotting transient and frequency response

To use these features, write a function that uses System Identification Toolbox
commands. Use the MATLAB Compiler software to create a standalone
application from the MATLAB Compiler file. For more information, see the
MATLAB Compiler documentation.

108

MATLAB® Compiler™ Support

Standalone applications that include System Identification Toolbox
functionality have the following limitations:

• No access to the System Identification library in the Simulink software
(slident)

• No support for model estimation

109

R2006a

Version: 6.1.3

New Features: Yes

Bug Fixes: No

• “balred Introduced for Model Reduction” on page 112

• “Search Direction for Minimizing Criteria Can Be Computed by Adaptive
Gauss-Newton Method” on page 112

• “Maximum Number of Bisections Used by Line Search Is Increased” on
page 112

111

R2006a

balred Introduced for Model Reduction

Use balred to perform model reduction instead of idmodred.

Search Direction for Minimizing Criteria Can Be
Computed by Adaptive Gauss-Newton Method

An adaptive Gauss-Newton method is now available for computing the
direction of the line search for cost-function minimization. Use this method
when you observe convergence problems in the estimation results, or as an
alternative to the Levenberg-Marquard (lm) method.

The gna search method was suggested by Adrian Wills, Brett Ninness, and
Stuart Gibson in their paper "On Gradient-Based Search for Multivariable
System Estimates", presented at the IFAC World Congress in Prague in 2005.
gna is an adaptive version of gns and uses a cutoff value for the singular
values of the criterion Hessian, which is adjusted adaptively depending on
the success of the line search.

Specify the gna method by setting the SearchDirection property to 'gna'.
For example:

m = pem(data,model_structure,'se','gna')

The default initial value of gamma in the gna search is 10^-4. You can set a
different value using the InitGnaTol property.

Maximum Number of Bisections Used by Line Search
Is Increased

The default value for the MaxBisections property, which is the maximum
number of bisections along the search direction used by line search, is
increased from 10 to 25. This increases the number of attempts to find a lower
criterion value along the search vector.

Functions and Properties Being Removed

112

http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/balred.html

Functions and Properties Being Removed

Compatibility Considerations: Yes

Function or Property Name What
Happens
When
You Use
Function
or
Property?

Use This Instead Compatibility
Considerations

idmodred Still runs balred See “balred
Introduced for
Model Reduction”
on page 112.

113

http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/balred.html

R14SP3

Version: 6.1.2

New Features: No

Bug Fixes: No

No New Features or Changes

115

R14SP2

Version: 6.1.1

New Features: No

Bug Fixes: No

No New Features or Changes

117

	toc
	R2014a
	Recursive Least Squares Estimator and Recursive Polynomial Model
	Interactive identification of single-input/single-output plants
	Interactive identification of single-input/single-output plants
	ssregest, a regularization-based state-space model estimator, fo
	plot command for iddata object enhanced
	Options set and specification of input delay and noise source in

	R2013b
	Regularized estimation of linear and nonlinear models for obtain
	ssarx subspace identification method for robust estimation of st
	Redesigned state-space model and initial model refinement dialog
	getpar and setpar commands to obtain and set parameter attribute
	Unstable models option added to System Identification Tool
	SamplingGrid property for tracking dependence of array of sample

	R2013a
	R2012b
	Regularized estimates of impulse response, specification of tran
	translatecov command for translating model covariance across tra
	ssform command for quick configuration of state-space model stru
	Feedthrough specification for discrete-time transfer function mo

	R2012a
	Summary
	New Features in This Version
	Continuous-Time Transfer Function Identification for Time- and F
	Time-Series Modeling and Forecasting, Including Generating ARIMA
	Forecasting
	Generating ARIMA Models

	Estimation of Multi-Output Polynomial and Process Models
	Multi-Output Polynomial Models
	Multi-Output Process Models

	Interactive Response Plots with Better Look and Feel
	Models Created with System Identification Toolbox Can Be Used Di
	Improved Reliability of Numerical Computations
	Estimating Functions and Estimation Option Sets
	Model Analysis and Validation Option Sets
	Identified Linear Models
	Support for Constraining and Fixing Parameters in All Identified
	Support for Model Arrays
	Estimation Report
	Convert Time-Series Model to Input-Output Model for Analysis
	Specify Input/Output Pairs Using Subsystems
	Group Inputs and Outputs
	Model Parameter Interaction
	Random Sampling

	System Identification Tool GUI
	Transfer Function Models
	Process Models
	State-Space Models
	Polynomial Models

	Changes Introduced in This Version
	Reorganization of Estimation Reports
	Polynomial Models
	Polynomial Model Estimators
	Integration on Noise Models (ARIMA models)
	idarx Models No Longer Returned in Multi-Output Model Estimation
	Specify Transport Delays
	Specify Display Variable
	Multi-Output Weighting Using arx
	Polynomial Structure

	State-Space Models
	State-Space Model Estimator
	n4sid Supports Canonical Forms
	State-Space Structure

	Process Models
	Process Model Estimator
	Multi-Output Support
	Noise Transfer Function
	Input Delay
	Process Model Structure
	Lower Bound on Time Constants

	Linear Grey-Box Models
	Linear Grey-Box Model Estimator
	Complex Parameters Support
	ODE file API
	Linear Grey-Box Model Structure

	Identified Frequency-Response Data Models
	Specify InterSample Behavior of Inputs
	Frequency Unit

	Identification Data Objects
	Frequency-Domain Data Units
	Impulse and Step Response Plots

	Analysis Commands
	Other Functionality Being Removed or Changed

	R2011b
	R2011a
	R2010b
	R2010a
	New Ability to Use Discrete-Time Linear Models for Nonlinear Bla
	New Cell Array Support for B and F Polynomials of Multi-Input Po
	Functions and Function Elements Being Removed

	R2009b
	R2009a
	Enhanced Handling of Offsets and Trends in Signals
	Ability to Get Regressor Values in Nonlinear ARX Models

	R2008b
	Functions and Properties Being Removed

	R2008a
	Simulating Nonlinear Black-Box Models in Simulink Software
	Linearizing Nonlinear Black-Box Models at User-Specified Operati
	Estimating Multiple-Output Models Using Weighted Sum of Least Sq
	Improved Handling of Initial States for Linear and Nonlinear Mod
	Improved Algorithm Options for Linear Models
	New Block Reference Pages
	Functions and Properties Being Removed

	R2007b
	New Polynomial Nonlinearity Estimator for Hammerstein-Wiener Mod

	R2007a
	New Nonlinear Black-Box Modeling Options
	New Nonlinear Grey-Box Modeling Option
	Optimization Toolbox Search Method for Nonlinear Estimation Is S
	New Getting Started Guide
	Revised and Expanded User's Guide

	R2006b
	MATLAB Compiler Support

	R2006a
	balred Introduced for Model Reduction
	Search Direction for Minimizing Criteria Can Be Computed by Adap
	Maximum Number of Bisections Used by Line Search Is Increased
	Functions and Properties Being Removed

	R14SP3
	R14SP2

	tables
	Call Replacements

